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Global dynamics of symmetric and asymmetric
wakes
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The two-dimensional wake–shear layer forming behind a rectangular-based forebody
with independent ambient streams on either side of the forebody is examined by direct
numerical simulation. Theoretical aspects of global modes and frequency selection
criteria based on local and global stability arguments are tested by computing local
stability properties using local, time-averaged velocity profiles obtained from the
numerical simulations and making the parallel-flow approximation. The theoretical
results based on the assumption of a slightly non-parallel, spatially developing flow
are shown to provide a firm basis for the frequency selection of vortex shedding and
for defining the conditions for its onset. Distributed suction or blowing applied at
the base of the forebody is used as a means of wake flow modification. The critical
suction velocity to suppress vortex shedding is calculated. It is shown that local
directional control (i.e. vectoring) of the near-wake flow is possible, but only when
all global modes are suppressed.

1. Introduction
The spatio–temporal dynamics of bluff-body wake flows has been clarified con-

siderably in recent years. These advances have been realized through a variety of
approaches including stability analyses, model studies, experiments and numerical
simulations. One of the key concepts emerging from these different approaches, and
one which has been particularly revealing, is that of a global mode which under-
lies the streamwise structure of the wake and its discrete frequency selection. The
important concepts and discussions of the applicability of global modes to general
flows, including wakes, are presented in the reviews by Huerre & Monkewitz (1990)
and Monkewitz (1993). A principal motivation behind the present study is to test
some of the detailed aspects of theoretical predictions concerning the destabilization
and nonlinear structure of global modes by means of an interactive combination of
numerical simulation and stability analysis. At the same time, the study is designed to
explore some resulting ideas related to control and symmetry breaking in a spatially
developing, quasi-parallel shear flow.

Bluff-body wakes are typical of a class of shear flows where local, time-averaged
velocity profiles may undergo changes in the nature of the local instability at different
spatial positions along the path of its streamwise development. In the near-wake
region, where there is a large velocity deficit in local cross-stream profiles of mean
velocity, the local flow is typically absolutely unstable: a band of instability waves
exists with group velocities directed both upstream and downstream. In the far-
wake region, where the velocity deficit is much smaller, the local flow is almost
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always convectively unstable: the entire band of unstable wavenumbers propagates in
the downstream direction. These properties have been clearly established by stability
analyses of measured and model wake profiles (cf. Mattingly & Criminale 1972; Koch
1985; Triantafyllou, Triantafyllou & Chryssostomidis 1986; Triantafyllou, Kupfer &
Bers 1987; Monkewitz 1988; and Hannemann & Oertel 1989).

The implications of such spatially varying stability properties for the global dynam-
ics of a flow were subsequently examined theoretically and numerically using a model
equation possessing generic, but spatially inhomogeneous, dispersive properties. In
particular, Chomaz, Huerre & Redekopp (1988, 1991) demonstrated that flows of
mixed stability type over their streamwise development can exhibit an internal reso-
nance when a spatial region of absolute instability of ‘sufficient size’ is sandwiched
within contiguous regions of convective instability. The resonance is self-excited and
characterized by a sharp frequency selection. The onset of these spontaneous dy-
namics, which is analogous to that of wake flows as the Reynolds number exceeds
the critical value for vortex shedding, occurs via a Hopf bifurcation. This latter fact
was verified experimentally in wakes behind cylinders by Mathis, Provansal & Boyer
(1984), Provansal, Mathis & Boyer (1987) and Sreenivasan, Strykowski & Olinger
(1986). Some of the dynamical characteristics described above, together with some
of the links to underlying stability properties, have also been observed in numer-
ical simulations (cf. Triantafyllou et al . 1986; Zebib 1987; Hannemann & Oertel
1989; and Karniadakis & Triantafyllou 1989, 1992). More recently Schumm, Berger
& Monkewitz (1994) have provided detailed experimental measurements in wakes
behind several different bluff bodies further validating the applicability of a Stuart–
Landau model for the onset of vortex shedding and the nature of the bifurcated state,
together with its response to various control inputs.

The spatial structure of the post-bifurcation state (e.g. that of active vortex shed-
ding) exhibits organized dynamics over streamwise length scales which are large in
comparison to the streamwise scale of the pocket of absolute instability responsible
for the appearance of the state. This dynamical state is termed a global mode since
it is describable in terms of a streamwise eigenmode which is destabilized when a
control parameter (e.g. the Reynolds number) exceeds a critical value. This critical
value of the control parameter for global instability is typically considerably greater
than the value of the control parameter for which local instability would be possible
on a parallel flow basis. The global mode is damped in the pre-bifurcation state
and it is spontaneously excited in the post-bifurcation state. It is worth noting that
any observed global mode state is, in fact, a nonlinear entity since some self-limiting
nonlinearity is required to achieve a realizable equilibrium state.

The important link between local instability properties and global dynamics in
flows exhibiting internal, spontaneous resonances has been established theoretically
via a slowly varying or WKBJ approach (cf. Chomaz et al . 1991; Monkewitz, Huerre
& Chomaz 1993 and Le Dizès et al . 1996). This intimate, but powerful, link between
local and global states is both appealing and useful for understanding the observed
dynamics and for proposing scenarios, or the lack thereof, for flow manipulation. For
example, the theory identifies a specific spatial position in the absolutely unstable
region where an effective ‘wave-maker’ is positioned, providing a precise frequency
selection criterion for the global mode at the bifurcation point. It also reveals
the existence of some type of integral criterion for the initial destabilization of a
global mode and provides some important insights pertaining to the forcing of these
modes (cf. Chomaz, Huerre & Redekopp 1990). However, in many real flows the
assumptions underlying the WKBJ approach are not approximated very closely. For
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Figure 1. Flow configuration.

example, the spatially developing wake flow at conditions only slightly below the
critical Reynolds number for onset of vortex shedding has local velocity profiles
which are clearly unstable based on a parallel-flow approximation. Nevertheless, the
pre-bifurcation state does not display any noise amplification of existing convective
or absolute instabilities, evidently, because the spatial non-uniformity of the flow
is so strong. Hence, there are two effects characterizing the wake at subcritical
conditions: the strong spatial non-uniformity of the flow and the under-developed
region of local absolute instability. Since vortex shedding is a global dynamical state
and the marginally stable, subcritical state has locally unstable profiles, it seems clear
that the streamwise non-uniformity of wake flows and their spatially varying stability
properties are important features underlying the observed spatio–temporal dynamics
of this class of free shear flows. Consequently there is a need to validate some of
the theoretical predictions for global modes and to examine the robustness of these
predictions in contexts where the underlying theoretical assumptions are violated.
This forms the principal motivation for the present study. The results of the study
reveal the utility of the theoretically established concepts and criteria.

2. Problem formulation
The general flow configuration studied here consists of two independent streams of

incompressible fluid flowing parallel to each other on opposite sides of a (semi-infinite)
body with a rectangular base. A wake forms downstream of the fixed separation points
of the rectangular base. A sketch of the flow configuration is provided in figure 1.
The ambient speeds of the two streams are specified independently so a persistent
shear can be imposed across the developing wake. The base height b is used as the
length scale and the average velocity U∞ of the two streams is used as the reference
velocity. With these scales, the relevant dimensionless parameters are the Reynolds
number Re and the velocity ratio r defined as

Re =
U∞b

ν
, r = 1

2
(U1 −U2). (2.1)

Note that U1 and U2 are dimensionless stream speeds scaled with the dimensional
velocity U∞. The computational domain (nominally) extends from three units (i.e.
a length equal to 3b) upstream of the rectangular base of the forebody to 20 units
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downstream. Convective outflow boundary conditions

∂v

∂t
+ u(xe, y, t)

∂v

∂x
= 0, (2.2)

where v is the velocity, are applied at the position xe at the downstream end of
the computational domain. The inlet flow is specified, on respective sides of the
forebody, to consist of ambient streams with uniform streamwise velocities U1 and U2

contiguous with (nominally Blasius) boundary layers of thicknesses δ1 and δ2 adjacent
to the parallel walls of the forebody. The lateral boundaries of the computational
domain extend approximately 20 units on each side from the walls of the forebody.
Along these boundaries the streamwise velocity is set equal to the respective ambient
value and the perturbation pressure is supposed to vanish. The cross-stream velocity
on these lateral boundaries is unspecified so that some weak inflow or outflow along
these permeable boundaries is allowed. The no-slip conditions are applied along the
walls of the forebody and the velocity vector is specified on the base so that arbitrary
spatial distributions and angles of blowing or suction can be imposed as a means of
wake flow modification. In what follows we suppose the dimensionless velocity U0 is
positive for base suction as shown in figure 1.

The direct numerical simulation of the two-dimensional, unsteady Navier–Stokes
equations in primitive variables for an incompressible fluid was based on the Quickest

(Quadratic Upwind Interpolation for Convective Kinetics with Estimated Streaming
Terms) scheme proposed by Leonard (1979) and adapted by Davis & Moore (1982)
and Davis, Moore & Purtell (1984). This finite-difference scheme was chosen because
of its simplicity of implementation and it is easy to incorporate more complex
geometric configurations like tandem wakes and two-dimensional jets. The production
version of the code employed in the study presented here used a two-level grid. A
uniform grid with ∆x = ∆y = 0.1 was used in the central streamwise strip extending
from the edge of one boundary layer to the other boundary layer. In the regions
external to this strip, the grid in the cross-stream direction was stretched by a factor
of 8% per interval as one proceeds away from the wake. This is illustrated in figure 2.

The numerical simulation was validated by comparing the computed frequency of
vortex shedding for symmetric flow (i.e. r = 0) with the numerical results reported
by Hannemann & Oertel (1989). They studied the same flow, albeit with slightly
different boundary layer in-flow. Using a Reynolds number of 200 and fixing the
boundary layer thicknesses to be approximately equal to the values corresponding to
their case, the shedding frequency (or Strouhal number when non-dimensionalized
with the average velocity U∞ and base height b) agreed to within 10% using the
nominal grid defined above. Refinement of the grid by a factor of 2 resulted in
only a 1% change in the shedding frequency. Another measure of the computational
accuracy is to evaluate the degree to which mass is conserved. For simulations
using the nominal grid, a global mass loss of 0.01% was found over a time period
of 10 vortex-shedding periods. Tests were also made to evaluate the effect of
the downstream boundary conditions, or the location where these conditions were
applied. To this end, simulations were made for a symmetric wake (r = 0) in the
absence of suction (U0 = 0) at Re = 320 and with inlet boundary layer thicknesses
of δ1 = δ2 = 1.2 where the downstream end of the computational domain was
varied from 20 to 37 to 97 units from the base of the forebody. The shedding
frequency was measured along with the amplitude (i.e. one-half the peak-to-peak
value) of the velocity fluctuations (∆us, ∆vs) of the saturated shedding state at the
fixed point (x = 1, y = 1/2) in the wake. The results are given in table 1. The
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Figure 2. Computational domain with two-level grid.

−3 < x < 20 −3 < x < 37 −3 < x < 97
nx = 230 nx = 400 nx = 1000

f 0.1065 0.1087 0.1086
∆us 0.0626 0.0626 0.0630
∆vs 0.0725 0.0802 0.0807

Table 1. Results from a test of the position of the downstream boundary conditions.

shedding frequency increased by about 2% when the domain was extended from the
nominal position of 20 units downstream. The amplitude of the streamwise velocity
fluctuation was essentially constant while the amplitude of the transverse velocity
fluctuation increased by about 10% in the extended domain. These results provided
a basis for confidence in the code and the selected grid parameters. The shorter
computational domain was used because the available computational resources were
limited.

3. Global mode dynamics in a symmetric wake
Simulations for symmetric wake flows (r = 0) were performed to provide data sets

which could be analysed for both their global dynamics and local stability properties.
Simulations were performed for different Reynolds numbers in the absence of any
base bleed or suction and with an inlet boundary layer thickness of δ = 1.2 on each
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side. The boundary layer thickness was chosen to be comparable to that used by
Hannemann & Oertel (1989) and was not varied for the simulations described in
this paper. If the boundary layer thickness is reduced much further, a refinement
in the grid is required which in turn requires greater computational resources. The
displacement thickness of the boundary layers for this choice of δ was computed to
be δ∗ = 0.396 at one grid point upstream of separation and Re = 160. It varied only
slightly (about 1%) over the Reynolds number range considered here. Ideally, the
Reynolds number at separation should be based on the geometric base height plus
the displacement thicknesses of the boundary layers, but we have chosen to always
quote the Reynolds number as defined in (2.1) and as it would appear in the scaled
equations of motion.

We present first results of a simulation performed at a slightly supercritical Reynolds
number, Re = 160, which was used most comprehensively to make comparisons with
theoretical predictions. Time series of the streamwise velocity and corresponding
frequency spectra for the saturated vortex-shedding state obtained at different spatial
positions in the wake are shown in figure 3. There is clearly a single fundamental
frequency (i.e. Strouhal number) f = 0.1 that is uniform throughout the wake. The
existence of a global frequency had been established in early studies by Kovasznay
(1949) and Roshko (1954). However, some confusion arose after Tritton (1959)
reported the existence of two frequencies in a cylinder wake when the Reynolds
number was in a certain range. This was clarified by Williamson (1988, 1989)
who showed that the double-frequency measurements were stimulated by end effects
which could induce oblique vortex shedding across the entire span. Model studies by
Albarède & Monkewitz (1992) and Park & Redekopp (1992) have shown that these
three-dimensional effects can be understood in terms of spanwise-propagating phase
modes. Williamson shows that, when end effects are eliminated, the wake remains
two-dimensional with a single, global frequency for Re < 180 in cylinder wakes. This
corresponds to a supercriticality parameter

∆ =
Re−Recr

Recr
(3.1)

of ∆ ' 2.83 assuming a value of Recr = 47. Computations by Karniadakis &
Triantafyllou (1992) suggest that three-dimensional effects appear for 200 < Re < 210,
or 3.26 < ∆ < 3.47, in cylinder wakes. In the present study we estimate Recr ' 120,
which yields ∆ = 0.33 for the simulation at Re = 160 shown in figure 3. Furthermore,
the highest Reynolds number considered is 520 corresponding to ∆ = 3.33.

Mean velocity profiles at various streamwise positions were computed for the
saturated state in order to establish connections between local stability properties and
global dynamics. The wavenumber kmax corresponding to the most amplified temporal
instability mode at each streamwise station was computed using an Orr–Sommerfeld
solver with Re = 160. This wavelength λmax was compared with the length scale L
for variation of the momentum thickness θ of the wake in order to obtain a measure
of the non-parallel nature of the spatially developing flow in terms of the parameter

ε =
1

kmax

(
1

θ

dθ

dx

)
=
λmax

L
. (3.2)

The variation of ε with the streamwise distance is shown in figure 4. It is clear that
streamwise gradients in the developing mean flow are not necessarily small for, say,
x < 6. Consequently, direct quantitative comparisons between the present results and
asymptotic theories should not be expected to yield good correspondence.
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Figure 3. Time series and corresponding frequency spectra for the saturated wake at Re = 160
at different spacial locations: (a) x = 1, y = 1.45; (b) x = 1, y = 1.45; (c) x = 5, y = 0.45; (d)
x = 5, y = 1.45; (e) x = 10, y = 0.45.

Frequency wavenumber pairs (ω0, k0) corresponding to the sinuous mode with
vanishing group velocity (i.e. ∂ω/∂k = 0) were computed based on a locally parallel
stability analysis of the mean velocity profiles at different streamwise positions. The
results for Re = 160 are shown in figure 5. It is evident from the plot of the absolute
growth rate ω0i(x) that the wake is locally absolutely unstable for 0 < x < 3.15. The
global mode for this case, however, extends far beyond the point xAU = 3.15.
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Figure 4. A measure of the non-parallel nature of the spatially developing wake at Re = 160.
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Figure 5. (a) The absolute frequency and (b) the absolute growth rate for the wake at Re = 160.

A representation of the global mode is shown in figure 6 where the transverse
velocity along the wake centreline is plotted for four equally spaced phases of the
vortex shedding cycle in the saturated state. For the purpose of computing the global
mode in the present problem, the computational domain was extended to 100 base
heights downstream of the forebody. However, as seen from figure 6, the global
mode extends beyond the computational domain and encompasses a streamwise
scale which is more than 30 times the length of the absolutely unstable pocket. By
way of comparison, Kovasznay (1949) and Eisenlohr & Eckelmann (1988) suggest
that the Kármán vortex street behind a cylinder extends (roughly) to 30 diameters
downstream for Reynolds number not too far above the critical value. We point
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Figure 6. The global mode structure in the wake at Re = 320.

out, parenthetically, that the results of figure 6 provide an excellent validation of the
outflow boundary conditions. They are found to have no distinguishable effect on the
structure of the global mode. In fact, the results in table 1 reveal that the shedding
frequency varied by less than 2% when the computational domain size was increased
from 20 to nearly 100 base heights behind the body.

Criteria for the existence of global mode dynamics in a spatially developing flow,
and a prediction for the selection of the frequency of the mode, were advanced by
Chomaz et al . (1991). They showed that a finite interval ∆xAU of local absolute
instability was a necessary condition for the existence of a global mode, and that the
frequency selected by that mode was equal to the real part of the absolute frequency
ω0 evaluated at the streamwise position xs defined by

∂ω0

∂x

∣∣∣∣
x=xs

= 0. (3.3)

Close examination of figure 5 reveals that extrema of the curves ω0r (x) and ω0i(x)
occur at different streamwise positions. This is clear evidence that the saddle point
xs does not lie on the real axis. However, since derivatives of ω0(x) are only known
along the real x-axis, the location of the saddle point xs of ω0(x) was found through
use of the Cauchy–Riemann equations and analytic continuation to complex values
of x = xr + ixi. This yields the expressions

ω0r (xs) = ω0r (xr, xi = 0)− ∂ω0i

∂xr

∣∣∣∣
xi=0

xi + O(x2
i ),

ω0i(xs) = ω0i(xr, xi = 0) +
∂ω0r

∂xr

∣∣∣∣
xi=0

xi + O(x2
i ).

 (3.4)

Pairs of (xr, xi) are sought such that (3.3) is satisfied. The position of the saddle
point for the symmetric wake at Re = 160 is (xsr = 0.79, xsi = 0.078). Straightforward
application of the saddle-point criterion for the frequency selection of the global
mode as computed based on local stability calculations yields the frequency fsp =
(2π)−1ω0r (xs) = 0.1006. This is compared with an observed frequency in the numerical
simulation (obtained from spectra shown in figure 3) of f = 0.1000.

The correspondence is quite surprising since the saddle-point criterion is an asymp-
totic result and this comparison has ignored any corrections to the global mode
frequency from higher-order effects such as mean flow non-uniformity, etc. Also,
the analysed state is somewhat removed from the bifurcation point (∆ = 0.33) and
nonlinear corrections could be significant. The close correspondence between the
predicted frequency based on the saddle-point criterion and the computed value may
be fortuitous in that the various corrections could be self-cancelling. In order to
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quantify some of these effects, and to provide the most comprehensive comparison
with the asymptotic theory, the first linear correction based on the analysis presented
by Monkewitz et al . (1993) was computed as well. The definition of the different
correction terms and how they are computed based on the numerically obtained
mean-flow profiles is described in the Appendix.

Although the work by Chomaz et al . (1991), and more recently by Le Dizès et al .
(1996), has shown that a necessary condition for the existence of an observable (i.e.
linearly unstable) global mode is that a finite interval of locally absolutely unstable
flow be present, no definitive global criterion for predicting the condition or control
parameter setting for onset is available. Using several model studies of the linear
Ginzburg–Landau equation, Chomaz et al . (1990) conjectured that destabilization of
the gravest global mode and the onset of global dynamics might be described by the
condition

IAU =

∫
∆xAU

[ω0i(x)]1/2dx > M, (3.5)

where M is some order-one constant. For the symmetric wake at Re = 160 shown
in figures 5 and 6, IAU = 0.795. We emphasize that this criterion does not have a
rigorous asymptotic basis, but we expect that it might have some utility, especially
when the absolute frequency ω0(x) has an isolated saddle point which is not too far
from the real axis. What it does imply is that the length of the absolutely unstable
pocket has a more significant role than the magnitude of the absolute growth rate. As
such, flow modification influencing ∆xAU can be expected to be especially influential
in altering the conditions for onset. Of course, modifying the level of the absolute
growth rate will likely accompany any modification affecting the streamwise extent of
local absolute instability. Further results related to this point will be presented later.

The critical Reynolds number Recr ' 120 for the onset of vortex shedding was
estimated by exploiting the established fact (see Provansal et al . 1987 and Sreenivasan
et al . 1986) that vortex shedding appears spontaneously via a Hopf bifurcation.
Consequently, the square of the saturation fluctuation amplitude at any point should
scale linearly with the distance from the bifurcation (Re−Recr) (see (3.7) below).
Results of this type are shown in figure 7 for the transverse and streamwise velocity
components at a fixed point (x, y) = (1.0, 0.5) in the wake. No attempt was made
to choose the time series at the position where the global mode was a maximum in
each realization (see figure 6). There may be some (possibly small) variation in the
amplitude of the global mode at a fixed point that derives solely from shape changes
as a function of ∆. Nevertheless, the bifurcation was supercritical and there appears
to be a substantial range of parameter values where the described scaling behaviour
applies. Schumm et al . (1994) arrived at the same conclusion based on their analysis
of data from several different wake flows.

The computed dynamics can be described in terms of the Landau model for the
complex amplitude of the global mode at a fixed spatial position. For this purpose,
the model is written as

dA

dt
= σA− β|A|2A (3.6)

where σ is the (complex) growth rate and β is the (complex) Landau constant. With
the constraints that σr(Recr) = 0 and that σr varies linearly with distance from the
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Figure 7. The square of the saturation amplitude of (a) the streamwise velocity component and (b)
the cross-stream velocity component in the wake and its dependence on the supercriticality of the
flow.

bifurcation point, one can write

|A|2sat =
σr

βr
=

1

βr

dσr
d Re

∣∣∣∣
Recr

(Re−Recr), (3.7)

1

|A|
d|A|
dt

= σr

(
1− |A|

2

|A|2sat

)
(3.8)

and

dθ

dt
= σi − σr

βi

βr

|A|2

|A|2sat
, (3.9)

where θ is the phase of the complex amplitude A. The temporal growth rate of
the global mode was determined following the approach utilized by Schumm et al .
(1994). Using the modulus of the streamwise velocity at a fixed spatial position
(x = 1.0, y = 0.5 in this case) for a slightly supercritical Reynolds number Re = 140
(∆ = 0.167), we obtain (dσr/d Re)|Recr = 0.0078 ± 0.0002 (cf. figure 8b). In the same
way, σi = 2πf = 2π(0.0967± 0.0002) (cf. figure 8c). The difference between the linear
and the saturated values of the frequency yielded the normalized Landau constant
βi/βr = −1.37± 0.30. These calculations were repeated at various spatial locations in
the wake to verify that the ‘constants’ were not spatially dependent. The corrections
for the respective constants quoted above encompass the variations found from the
time series at different spatial positions.

A number of researchers (e.g. Sreenivasan et al . 1986 and Williamson 1989) have
shown that there is a linear increase in the Strouhal number with Reynolds number
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Figure 8. (a) The time series of the streamwise velocity component in the wake at x = 1 and
y = 0.5 along with the corresponding temporal development of (b) the amplitude of the streamwise
velocity component and (c) the vortex shedding frequency at Re = 140.
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Figure 9. Vortex shedding frequency versus Reynolds number.

for Reynolds numbers slightly above critical. In their simulation of the symmetric
wake behind a rectangular forebody similar to that studied here, Hannemann &
Oertel (1989) reported a Strouhal number of 0.113 at Re = 200. We find a value of
f = 0.102 at Re = 200, a value which is 11% smaller. However, direct comparisons
should employ a Reynolds number which accounts for the displacement thicknesses
of the boundary layers at separation. Since Hannemann & Oertel (1989) do not report
computations of the displacement thicknesses at the trailing edge, the discrepancy in
observed shedding frequency cannot be rationalized. On the other hand, Eisenlohr
& Eckelmann (1988) report a universal Strouhal–Reynolds number curve for wakes
behind bluff rectangular bodies which includes the displacement effect. Using a
Reynolds number based on the base height plus displacement thicknesses, we obtain
f = 0.184 compared to f = 0.177 (a difference of 4%) by Eisenlohr & Eckelmann
(1988) at identical values of the adjusted Reynolds numbers. This provides further



Global dynamics of symmetric and asymmetric wakes 243

2.0

2.4

1.6

1.2

0.8
0 100 200 300

Re

Le

Figure 10. The length of the recirculation zone of the steady or time-averaged mean flow and its
relation to the Reynolds number.

validation of our numerical results. The Strouhal–Reynolds number (i.e. f vs. Re)
variation from our simulations of the symmetric wake is shown in figure 9. The
Reynolds number used here excludes the displacement effect. Since the displacement
thickness was (nearly) constant over the range of Reynolds numbers studied and
the sum of the displacement thicknesses was 0.792 (scaled by the base height), the
adjusted Reynolds number is readily obtained by multiplying by the factor 1.792.

Another measure of the symmetric wake is the streamwise distance Le from the
base of the forebody to the location of the near-wake saddle point in the streamline
pattern. This is the length of the steady recirculating eddies at subcritical Reynolds
numbers and the distance over which reversed flow is present in the time-average
mean flow at supercritical Reynolds numbers. This length is shown in figure 10.
Reference to figure 5 shows, at least for Re = 160, that Le < xAU .

4. Global mode dynamics in asymmetric wakes
One objective of this study was to investigate how the development of the wake

is affected by a breaking in the symmetry of the mean flow. The measure of the
symmetry of the mean flow is the velocity ratio r defined in (2.1). When r is non-zero,
the flow will initially appear wake-like with a large velocity deficit. However, as the
two layers of oppositely signed vorticity merge and the deficit relaxes, the flow will
eventually transition from a wake flow to a shear layer flow. There is some question
as to how this asymmetry will affect the structure of the global mode and how the
vortex roll-up transitions from the familiar Kármán street to that of a shear layer
where all vortices have the same sign. To this end, a number of simulations were
performed for different velocity ratios. Throughout this study we assume that the
high-speed stream is on the top (y > 0).

First, simulations were performed to establish the effect of mean flow asymmetry on
the shedding frequency and the critical Reynolds number. Results of these simulations
are shown in figures 11 and 12. The shedding frequency, at fixed Reynolds number,
increases slightly with the velocity ratio. However, the critical Reynolds number
decreases as the asymmetry of the ambient flow increases. The simulations shown
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Figure 11. The vortex shedding frequency of the asymmetric wake at Re = 160.
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Figure 12. The critical Reynolds number of the asymmetric wake.

in figure 11 for Re = 160 were examined in more detail by taking local velocity
profiles obtained from the time-averaged flow of the saturated state at each velocity
ratio. The absolute frequency ω0(x) was computed at different streamwise positions
using the Orr–Sommerfeld solver together with the branch-point search algorithm.
The distributions of ω0(x), and the associated value k0(x), are presented in figure
13. Results are shown for the symmetric wake and two non-zero values of the
velocity ratio. It is evident from figure 13(b) that the absolute growth rates are
diminished by the effect of shear. Since these results are obtained for a fixed Reynolds
number, and the critical Reynolds number decreases with increasing r, the effect
of shear in decreasing the absolute growth rates would be even more pronounced
if calculations were compared for fixed values of the supercriticality parameter ∆.
Asterisks appearing on the curves in figures 13(a, b) indicate the position along the
real x-axis of the saddle point xs (cf. (3.3)). One also observes from figure 13(b) that
the streamwise extent of the absolutely unstable region decreases with increasing r.
As a result, evaluation of the integral quantity I in (3.5) will decrease with increasing
asymmetry due both to a reduction in ∆xAU and in the magnitudes of ω0i(x). These
effects are shown graphically in figure 14.

The frequency selection criterion discussed previously and defined by (3.3) was
compared using the simulations corresponding to the results presented in figures 5
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Figure 14. (a) The streamwise extent of the region of absolute instability and (b) the size of the
absolute instability region as measured by the parameter IAU for the asymmetry wake at Re = 160.

and 13. The leading-order asymptotic prediction of the frequency fsp = (2π)−1ω0r (xsr)
was evaluated for several velocity ratios. The results are tabulated in table 2. The
differences between the observed frequency and that determined by the saddle-point
criterion are less than 2% in all cases. The correspondence is quite surprising since
there are corrections arising from the non-parallelism of the flow, as defined in
the Appendix, and the nonlinear nature of the global mode. It is important to
point out that the calculation of fsp already contains some nonlinear contributions,
principally those arising from mean flow corrections. Mean flow velocity profiles
obtained from a numerical simulation of the full unsteady equations of motion (i.e.
vortex shedding active) at a supercritical Reynolds number were used in the local
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r xsr xsi f fsp fk fp

0.00 0.79 0.078 0.1000 0.1006 0.1106 0.1007
0.05 0.74 0.069 0.1004 0.1008 0.1108 0.1007
0.10 0.74 0.066 0.1010 0.1014 0.1103 0.1014
0.15 0.76 0.081 0.1017 0.1023 0.1109 0.1023
0.20 0.81 0.132 0.1026 0.1035 0.1106 0.1038
0.25 0.82 0.128 0.1035 0.1050 0.1108 0.1049

Table 2. Saddle-point data and comparison of frequency selection criteria
for asymmetric wakes at Re = 160.

instability calculations underlying the prediction of fsp reported here. A better test
of the theoretical underpinnings would employ velocity profiles from a completely
steady simulation (i.e. vortex shedding absent) at the prescribed supercritical Reynolds
number. The nonlinear correction from the mean flow correction is expected to be
rather weak with a supercriticality parameter ∆ = 0.33, but no quantitative test of
this exists. One could also consider smaller values of ∆, but transients decay much
more slowly as ∆ is decreased toward zero.

Alternative ad hoc proposals for the frequency selection for a global mode in a
spatially developing flow have been advanced by Koch (1985) and by Pierrehumbert
(1984). Koch proposed a frequency selection based on the downstream transition point
where the flow instability type changes from absolute to convective. This frequency
is denoted fk in table 2. Pierrehumbert proposed that the frequency selected by the
global mode corresponds to the real value of the absolute frequency ω0r at the point
where the absolute growth rate ω0i achieves a maximum. This frequency is denoted
by fp in table 2. The value of fp will be equal to fsp when the saddle point lies
on the real x-axis. However, this implies that the length of the absolutely unstable
region is marginally equal to zero. It is evident from figures 13(a, b) that fp differs,
in the present simulations, only slightly from that given by the saddle-point selection
criterion. This is because the saddle point is found to lie relatively close to the real
x-axis. In any case, the saddle-point selection criterion is found to provide the best
estimate. Of course, there is a rigorous basis for the latter criterion.

It is evident from the foregoing results that the strength or vigour of the global
mode will decline as the shear or mean flow asymmetry is increased. This rather
qualitative remark is made slightly more quantitative by exhibiting in figure 15 the
entire global mode for different velocity ratios at a fixed Reynolds number Re = 320.
In this figure the transverse velocity along the centreline (y = 0) of the wake is
shown at four different phases of the saturated global mode. We have not attempted
a comprehensive scaling of the global mode structure along the lines performed by
Goujon-Durand, Jenffer & Wesfreid (1994) for the wake of a circular cylinder. The
asymmetry in the present case of the mode about the y = 0 axis for r 6= 0 is evidence
of the asymmetric transverse eigenfunction structure. The eigenfunction amplitude is
greater for y > 0, where the vorticity is larger and the velocity difference across the
shear layer is greater, than it is for y < 0. One observes also a clear diminution in the
length of the global mode as the shear is increased. Now the streamwise structure of
the global mode establishes the amplitude distribution of the synchronized dynamics;
it does not reflect the strength of the local vorticity concentrations. The latter is
described by the transverse eigenfunction and the magnitude of the phase velocity
c relative to the local mean velocity profile U(y) at any location x. For example,
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Figure 15. The global mode structure at Re = 320 for (a) r = 0, (b) r = 0.1, (c) r = 0.2.

if two critical levels exist (i.e. two zeros in the function U(y) − c), then there will
exist two levels where concentrations of vorticity of opposite sign will form as in
the familiar vortex street. However, when the velocity deficit in the wake diminishes
with a fixed velocity ratio, only one critical level exists and vorticity concentrations
of only one sign, that associated with the shear across the wake, will form. The
wake will then transition to a shear layer. It is entirely possible for this transition to
occur at some streamwise location within the active domain of the global mode. The
vorticity structures in wakes having different velocity ratios are shown in figure 16.
The transition from the wake mode to the shear layer mode is especially evident in
figure 16(c) where a simulation with r = 0.2 is shown. The vorticity contours in figure
16 are drawn using the same level values in each of the panels.

Wallace & Redekopp (1992) discussed the transition from a wake mode to a shear
layer mode in the context of linear stability theory using wake–shear layer profiles
having the velocity deficit and the velocity ratio as parameters. They suggested
that a possible measure of where this change in the vorticity distribution from a
wake form to a shear layer form occurs might be the streamwise position where
the sinuous mode of instability with the maximum spatial growth rate transitions
from two critical levels to one critical level. Of course, there is no apparent relation
between the most amplified wave according to local linear spatial stability theory
and the characteristics of the saturated, supercritical global mode. Nevertheless, this
is a well-defined criterion and one that is, at least, quite reasonable for convectively
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Figure 16. Vorticity contours (——, negative vorticity; · · · · · ·, positive vorticity) at Re = 320 for
(a) r = 0, (b) r = 0.1, (c) r = 0.2.

Re = 160 Re = 320

r = 0.1 15.9 12.8
r = 0.2 9.4 6.3

Table 3. Transition-point data for xt based on spatial stability theory.

unstable flows. Computations based on local mean velocity profiles from the present
numerical simulations yield the transition points xt listed in table 3.

5. The effect of suction
A number of different techniques have been proposed for modifying or suppressing

the vortex shedding from bluff bodies with the important practical goal of reducing the
pressure drag on the body. Monkewitz (1989, 1993) has categorized these approaches
to wake control in terms of open-loop and closed-loop control. One of the earliest
approaches was that proposed by Roshko (1954) where a thin splitter plate aligned
with the free-stream flow was strategically placed along the centreline of the near
wake. His experimental results proved quite encouraging. Recently, this approach was
explored further through numerical simulations by Grinstein, Boris & Griffin (1991).
From the point of view of global modes, one might anticipate that this approach to
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Figure 17. The dependence of the vortex shedding frequency of the asymmetric wake (r = 0.2) at
Re = 160 on the trailing-edge suction velocity.

wake modification will be most efficient if the control plate is centred around the
location of the saddle point of the absolute frequency (cf. (3.3)). However, we are not
aware of any studies to date which have explored this connection with wake control.
The control of vortex shedding through this approach is most likely achieved through
significant alteration of the local mean velocity profiles with consequent reductions in
the local absolute growth rates. The suppression of vortex shedding via insertion of a
small control wire placed in the external flow close to the near wake (cf. Strykowski
& Sreenivasan 1990) can be rationalized in a similar manner.

In a different approach, base bleed has been shown to be quite effective in reducing
the strength of vorticity concentrations and the shedding frequency, even to the
extent of suppressing shedding altogether (cf. Wood 1964, 1967; Bearman 1967;
Hannemann, Lynn & Strykowski 1986; Hannemann & Oertel 1989; and Schumm et
al . 1994). Since the region of absolute instability in the near wake exerts a dominant
influence on the spatio–temporal dynamics of the wake, it seems clear that the use of
blowing or suction from the base of the forebody can be used to alter local stability
properties and, thereby, provide a mechanism for wake control or flow modification.
In the earlier numerical experiment of Hannemann & Oertel (1989) on a symmetric
wake, uniform blowing from the base was applied and a critical value was found
for which vortex shedding was suppressed. From a global mode point of view, the
velocity deficit in the near-wake profiles was reduced through base bleed rendering
the flow less absolutely unstable and, eventually, decreasing the amplification of the
global mode to negative values.

In the present study the effect of suction from the base region is investigated. In
this case the velocity deficit near the base is expected to be deepened leaving the
local flow more absolutely unstable. However, the application of suction should
pull the near-wake saddle point of the time-averaged streamlines closer to the base,
thereby decreasing the spatial extent of the region of absolute instability. Since the
destabilization of a global mode requires that some integral measure of the absolute
growth rate over the absolutely unstable region exceeds a critical value (like that
proposed in (3.5)), there is an interesting competition occurring and the possible
suppression of vortex shedding via suction is worth exploring.

A series of numerical simulations was performed with uniform suction across the
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Figure 18. (a) The real absolute frequency and (b) the absolute growth rate of the asymmetric wake
(r = 0.2) at Re = 160 without suction or blowing (—–, U0 = 0), subject to blowing (–+–+–+–+,
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base of the rectangular forebody to define the response of the wake to this technique
for control. The first case considered was that of a sheared wake with r = 0.2 and
Re = 160. As suction was increased gradually, the wake shedding frequency declined
continuously until vortex shedding was abruptly suppressed at a suction velocity
of U0 = 0.22 and a completely steady wake flow appeared. The variation of the
Strouhal number with suction velocity is shown in figure 17. The distribution of the
absolute frequency was computed for cases with uniform suction or blowing. Results
are shown in figure 18. One observes that the absolute growth rates increase with
increasing suction in the very near-wake region, but that the streamwise extent of
absolute instability is continuously shortened and the position of maximum absolute
growth rate moves upstream, even to the trailing edge of the body. At the same time
the minimum value of the frequency ω0r (x) decreases in magnitude consistent with
figure 17, and the position of the minimum moves upstream.

Calculations of the location of the saddle point of ω0(x) were not made for all the
cases with suction because the location of the branch point of the dispersion relation,
required for the evaluation of ω0(x), became very difficult for mean velocity profiles
near x = 0 where the shear layers in the wake became very thin. Nevertheless, it
appears that this saddle point is very near, if not at, the trailing edge as the suction
approaches its critical value for suppression of all global modes. Calculations of
the saddle point xs of ω0(x) for low values of the suction velocity in a wake with
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Figure 19. (a) The streamwise extent of the region of absolute instability and (b) the size of the
absolute instability region as measured by the parameter IAU for the asymmetric wake (r = 0.2) at
Re = 160 and (c, d) likewise at Re = 320.

r = 0.2 and Re = 160 are given in table 4, together with the frequencies determined
by the different selection criteria. The frequency prediction based on the saddle-point
criterion without regard for the boundary condition imposed on the global mode by
the presence of the body gives consistently better results.

The discrepancy between the predicted frequency and that observed in the full
simulation increases slightly as the suction pulls the position of the saddle point
toward the trailing edge. The flow becomes strongly non-parallel as the suction
increases and the non-parallel corrections described in the Appendix, although not
calculated, are expected to become increasingly important. The location of the
downstream end of the absolutely unstable region, together with the value of the
integral quantity in (3.5), is displayed in figure 19. The value of the integral IAU
becomes more sensitive to the value of ω0i(x) near the trailing edge as the suction is
increased. At the same time, the evaluation of ω0i(x) becomes more difficult in this
region. As a consequence, accuracy of the numerical values for IAU is expected to
decrease as the suction increases. For example, the initial rise in IAU for Re = 160 as
the suction increases toward the critical value is believed to be real, but the potential
error bounds in the computed values also increase. Nevertheless, there is a clear
decline in IAU with increasing suction for Re = 320, and at higher suction velocities at
Re = 160, and the distinct suppression of global dynamics beyond a critical suction
velocity is firmly established.

Since base suction is found to be effective in damping all global modes, another
sequence of simulations was performed for the purpose of evaluating the critical
suction velocity for different flow conditions. The results are shown in figure 20.
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U0 xsr xsi f fsp fk fp

0.00 0.81 0.132 0.1026 0.1035 0.1106 0.1038
0.05 0.64 0.088 0.1020 0.1021 0.1138 0.1025
0.10 0.47 0.079 0.0988 0.1000 0.1148 0.1038
0.15 0.38 0.111 0.0945 0.0979 0.1159 0.1050
0.20 0.33 0.148 0.0884 0.0956 0.1206 0.1019

Table 4. Saddle-point data and comparison of frequency selection criteria
for asymmetric wakes with suction: r = 0.2, Re = 160.

In figure 20(a) the critical suction velocity is shown as a function of the Reynolds
number at a fixed value of the velocity ratio r = 0.2. It is apparent that the value of
U0,crit is approaching an asymptotic value as the Reynolds number increases. This is
consistent with the experimental work of Leu & Ho (1993) where a critical suction
velocity of approximately 0.5 is reported for a symmetric wake at Re = 2000. In their
study the maximum absolute growth rate in the wake without suction was near 0.1,
which is similar to the values we find here. However, the region of absolute instability
extends to x ' 4 in their study while we find x ' 3. Figure 20(b) shows that the
required suction velocity for suppressing global dynamics decreases, at fixed Reynolds
number, as the asymmetry of the mean flow increases. The decrease is quite significant
and is believed to be only slightly influenced by the fact that the critical Reynolds
number for onset of global dynamics decreases slowly with increasing velocity ratio
(cf. figure 12).

A very interesting result was observed when the suction equalled or exceeded
the critical value for a sheared wake. With supercritical uniform suction from the
base in a wake–shear layer, the steady, near-wake flow was observed to be directed
(vectored) from the low-speed side toward the high-speed side. To quantify this effect,
the saddle point of the near-wake streamline pattern was located in each computed
realization for r = 0.2, Re = 160, and different applied suction velocities. When the
suction is below critical and the global mode is active, the streamline pattern for
the time-averaged flow was computed. When the suction is supercritical the entire
flow is steady and a stationary streamline pattern persists. The angle between the
x-axis and a line emanating from the origin at the centre of the base and extending
through the computed saddle-point location was measured for each realization. The
results are exhibited in figure 21. It is clear that a fairly abrupt symmetry-breaking is
possible, but only when all global modes are suppressed. These ideas are pursued in
a more comprehensive way in Hammond & Redekopp (1996) where the symmetry-
breaking bifurcation is more abrupt at higher Reynolds numbers and deflection angles
approaching 30◦ in each direction are shown to be possible by selective variations in
the distribution of the suction velocity across the base. Before ending this section,
however, we point out that the concepts associated with global mode dynamics are
pivotal to the understanding of this vectored response and its initiation.

6. Conclusions
Numerical simulations, performed in conjunction with local instability calculations,

have been performed for the purpose of validating the concept of a global mode
in relation to the vortex shedding state. A global mode is a streamwise eigenmode
characterized by a discrete frequency which synchronizes the dynamics over large
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rigorous proposal of a frequency selection criterion for a spatially developing flow,
has been shown to provide surprisingly accurate frequency predictions. In the case of
the symmetric wake at a supercriticality of (Re−Recr)/Recr = 0.33, the saddle-point
theory overpredicts the frequency by less than 1%. As the shear is increased and/or the
suction velocity is increased, the saddle-point theory provides less accurate frequency
predictions because at these conditions the mean flow deviates more severely from
the weakly non-parallel, slightly supercritical conditions which were required for this
theory. Nevertheless, the saddle-point theory does provide a surprisingly accurate
prediction, even beyond the expected range of application.
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Support for much of the computational effort was provided by the San Diego Super-
computer Center. D. H. acknowledges partial support via a Rockwell International
Graduate Fellowship. The authors acknowledge several fruitful discussions with P.
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Appendix
Monkewitz, Huerre & Chomaz (1993, hereinafter referred to as MHC), provided

an analysis for the linear correction to the saddle-point frequency selection derived by
Chomaz et al. (1991) arising from the spatially varying properties of the underlying
waveguide. They presented a WKBJ analysis for weakly non-parallel shear flows at
high Reynolds numbers. We describe here an application of their asymptotic theory
using the spatially developing mean velocity profiles computed in the direct numerical
simulation of the symmetric wake flow at Re = 160. Specifically, we compute the terms
defined in equation (4.14) in MHC. With these terms to hand, the first correction to
the global mode frequency based on the linearized saddle-point criterion can be found.

The MHC theory begins with the Rayleigh stability operator applied to the velocity
profile U(y; xs) at the streamwise position xs of the saddle point of the absolute
frequency ω0(x),

Lφ0 ≡
{

(kU − ω)

(
∂2

∂y2
− k2

)
− kU ′′

}
φ0 = 0. (A1)

Primes are used here to denote differentiation with respect to the cross-stream coor-
dinate y and (ω, k) form the frequency–wavenumber pair (ω0, k0) associated with the
branch point values at this streamwise-position. Owing to the spatial non-uniformity
of the flow, both the eigenfunction and the eigenvalues will change with streamwise
position. The relevant corrections to the eigenfunction are represented by writing the
streamwise gradient of φ0(y; k, ω, x) as

∂φ0

∂x
= −φ1k

∂k

∂x
− φ1ω

∂ω

∂x
− φ1x. (A2)

The inhomogeneous equations for the indicated functions are as follows:

Lφ1k =
ωU ′′ − 2k(kU − ω)

kU − ω φ0; (A3)

Lφ1ω = − kU ′′

kU − ωφ0; (A4)

Lφ1x = k

{
kU ′′

kU − ω
∂U

∂x
− ∂U ′′

∂x

}
φ0. (A5)
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Analysis type xs ks ωs cs = ωs/ks

Inviscid 0.917 + 0.34i 1.209− 0.747i 0.647 + 0.121i 0.343 + 0.311i
Viscous 0.737 + 0.074i 1.166− 0.705i 0.632 + 0.1003i 0.359 + 0.302i

Table 5. Comparison of saddle-point data from an inviscid and a viscous analysis.

Eigenfunction k0 ω0 c0 = ω0/k0

φ0 1.209− 0.747i 0.639 + 0.123i 0.337 + 0.310i
φ1k 1.209− 0.747i 0.663 + 0.130i 0.349 + 0.323i
φ1x 1.209− 0.747i 0.644 + 0.142i 0.333 + 0.323i

Table 6. Modified eigenvalue data used for computation of respective eigenfunctions.

The solutions of (A3) and (A5) are needed, according to (4.14) in MHC, to evaluate
the respective contributions to the first-order correction to the global mode frequency.
The spatial non-uniformity of the mean flow is clearly evident in (A5). In practice,
however, the calculation of the indicated derivatives of the mean velocity profile is
a potential source of error. These derivatives were evaluated in the present work by
using a forward difference formed by data at (xsr − ∆x) and at xsr , where ∆x = 0.1
according to the nominal grid used in the simulation.

Since the MHC theory takes the Reynolds number to be sufficiently high so that
the leading-order, local stability is based on inviscid theory, local stability calculations
were made using the Rayleigh equation (A1). With the local dispersive properties
known, the saddle point was located following equation (3.4) in the text and the
saddle-point values (ωs, ks) were computed. These results are compared in table 5
with corresponding calculations based on a viscous, or Orr–Sommerfeld, analysis of
the same mean profiles using the base Reynolds number Re = 160. The most striking
difference is in the location of the saddle point.

Continuing with the inviscid theory and seeking to evaluate the functions φ1k and
φ1x, another point of difficulty is encountered. The evaluation of these functions
requires the computed values of the pair (ω, k) obtained from the branch-point
calculation of the local dispersion relations at xsr . Since these values are known only
imprecisely, the solvability conditions for (A3) and (A5) are not satisfied exactly. As
a consequence, application of a shooting algorithm with matching at some interior
point is destined to fail. To circumvent this difficulty, we fixed the wavenumber at
k = ks = k0(xs) and iterated the frequency (or phase speed c) until the solvability
condition was satisfied. Using velocity data along the real line and the refined,
or appropriately modified, eigenvalue pair (ω, k), computation of the functions φ1k

and φ1x was completed. Using velocity field data from the simulation with r = 0,
Re = 160 and no suction/blowing (i.e. U0 = 0), the functions shown in figure
22 were obtained. The iterated frequency–wavenumber pairs associated with these
eigenfunction computations are listed in table 6. The entry for φ0 has a different
frequency and phase speed than that quoted in table 5 for the saddle point because
the present results apply along the real line where the velocity profile data are known.
Of course, as noted above, we have used the true k at the saddle point which is
located 0.34 units above the real line as specified in table 5.

With the eigenfunctions φ0, φ1k and φ1x to hand, together with data for both the
streamwise and transverse components of the mean velocity, the various quadratures
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Figure 22. Eigenfunctions for r = U0 = 0, Re = 160 used in computing the first correction to the
global frequency.

appearing in equations (4.14 a–d) in MHC can be evaluated. Following the notation
in MHC in exact sequence we obtain the following results:

δωt = i

{
(0.0735 + 0.0856i)− (0.4721− 0.3088i)

0.1994− 1.8503i

}
= 0.1902− 0.2336i, (A6)

dtkk =
2(0.0424− 0.4791i)− (0.3226 + 0.5270i)

0.1994− 1.8503i
= 0.7798− 0.2125i, (A7)

dtkx =
(0.4721−0.3088i)+(0.07796−0.05627i)− (0.04428+0.1539i)

0.1994− 1.8503i
= 0.2462+0.2468i

(A8)

dtxx =
2(0.1025 + 0.1072i)− (0.00393 + 0.0776i)

0.1994− 1.8503i
= −0.0216− 0.0298i. (A9)

Each of these expressions has the common denominator, denoted by Ltω(φt0) in MHC.
These results allow calculation of the first correction to the global mode frequency
resulting from the linear effects of flow non-uniformity. If the saddle-point location
is isolated from boundaries, the complex global mode frequency is given by (6.2) in
MHC. If the saddle point is close to a boundary, like the origin of the wake, the
complex global mode frequency is given by (6.3) in MHC. The predicted and observed
frequencies are summarized in table 7. The first correction, whether the saddle point
is essentially isolated from the wake origin or close enough to be influenced by it, has
a positive real part and a negative imaginary part. This correction, therefore, yields a
Strouhal number that departs even further from the observed value. The correction
to the imaginary part of the global frequency is also quite strong (i.e. the growth rate
for the global mode). In fact, the correction is so strong for the doubly-infinite case
where the saddle point is isolated that the global mode is predicted to be damped. Of
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